12,225 research outputs found

    Spin-Projected Generalized Hartree-Fock as a Polynomial of Particle-Hole Excitations

    Get PDF
    The past several years have seen renewed interest in the use of symmetry-projected Hartree-Fock for the description of strong correlations. Unfortunately, these symmetry-projected mean-field methods do not adequately account for dynamic correlation. Presumably, this shortcoming could be addressed if one could combine symmetry-projected Hartree-Fock with a many-body method such as coupled cluster theory, but this is by no means straightforward because the two techniques are formulated in very different ways. However, we have recently shown that the singlet S2S^2-projected unrestricted Hartree-Fock wave function can in fact be written in a coupled cluster-like wave function: that is, the spin-projected unrestricted Hartree-Fock wave function can be written as a polynomial of a double-excitation operator acting on some closed-shell reference determinant. Here, we extend this result and show that the spin-projected generalized Hartree-Fock wave function (which has both S2S^2 and SzS_z projection) is likewise a polynomial of low-order excitation operators acting on a closed-shell determinant, and provide a closed-form expression for the resulting polynomial coefficients. We include a few preliminary applications of the combination of this spin-projected Hartree-Fock and coupled cluster theory to the Hubbard Hamiltonian, and comment on generalizations of the methodology. Results here are not for production level, but a similarity transformed theory that combines the two offers the promise of being accurate for both weak and strong correlation, and particularly may offer significant improvements in the intermediate correlation regime where neither projected Hartree-Fock nor coupled cluster is particularly accurate.Comment: accepted by Phys. Rev.

    Projected Hartree Fock Theory as a Polynomial Similarity Transformation Theory of Single Excitations

    Get PDF
    Spin-projected Hartree-Fock is introduced as a particle-hole excitation ansatz over a symmetry-adapted reference determinant. Remarkably, this expansion has an analytic expression that we were able to decipher. While the form of the polynomial expansion is universal, the excitation amplitudes need to be optimized. This is equivalent to the optimization of orbitals in the conventional projected Hartree-Fock framework of non-orthogonal determinants. Using the inverse of the particle-hole expansion, we similarity transform the Hamiltonian in a coupled-cluster style theory. The left eigenvector of the non-hermitian Hamiltonian is constructed in a similar particle-hole expansion fashion, and we show that to numerically reproduce variational projected Hartree-Fock results, one needs as many pair excitations in the bra as the number of strongly correlated entangled pairs in the system. This single-excitation polynomial similarity transformation theory is an alternative to our recently presented double excitation theory, but supports projected Hartree-Fock and coupled cluster simultaneously rather than interpolating between them

    Quasiparticle Coupled Cluster Theory for Pairing Interactions

    Get PDF
    We present an extension of the pair coupled cluster doubles (p-CCD) method to quasiparticles and apply it to the attractive pairing Hamiltonian. Near the transition point where number symmetry gets spontaneously broken, the proposed BCS-based p-CCD method yields significantly better energies than existing methods when compared to exact results obtained via solution of the Richardson equations. The quasiparticle p-CCD method has a low computational cost of O(N3)\mathcal{O}(N^3) as a function of system size. This together with the high quality of results here demonstrated, points to considerable promise for the accurate description of strongly correlated systems with more realistic pairing interactions

    Hartree-Fock symmetry breaking around conical intersections

    Full text link
    We study the behavior of Hartree-Fock (HF) solutions in the vicinity of conical intersections. These are here understood as regions of a molecular potential energy surface characterized by degenerate or nearly-degenerate eigenfunctions with identical quantum numbers (point group, spin, and electron number). Accidental degeneracies between states with different quantum numbers are known to induce symmetry breaking in HF. The most common closed-shell restricted HF instability is related to singlet-triplet spin degeneracies that lead to collinear unrestricted HF (UHF) solutions. Adding geometric frustration to the mix usually results in noncollinear generalized HF (GHF) solutions, identified by orbitals that are linear combinations of up and down spins. Near conical intersections, we observe the appearance of coplanar GHF solutions that break all symmetries, including complex conjugation and time-reversal, which do not carry good quantum numbers. We discuss several prototypical examples taken from the conical intersection literature. Additionally, we utilize a recently introduced a magnetization diagnostic to characterize these solutions, as well as a solution of a Jahn-Teller active geometry of H8+2_8^{+2}.Comment: accepted to JCP December 2017, published online January 201

    Range Separated Brueckner Coupled Cluster Doubles Theory

    Get PDF
    We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly-correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous overcorrelation of approaches based on ring diagrams (i.e. the particle-hole random phase approximation). Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and overall this scheme promises energetic properties for realistic periodic and extended systems which existing methods do not possess.Comment: 5 pages, 3 figs. Now with supplementary info. Comments welcome: [email protected]
    • …
    corecore